- Voltage monitoring in 3-phase mains in accordance with VDE 0126-1-1
- Quick net error recognition
- Supply voltage = measured voltage
- 2 change over contacts
- Width 35 mm

Installation design

Technical data

- 1. Functions

Voltage monitoring in 3-phase mains in accordance with VDE 0126-1-1 with fixed tripping delay, fixed threshold, adjustable 10-minutes-average and selectable fault latch by means of rotary switch.
$\begin{array}{ll}\text { WIN } & \text { Monitoring the fixed adjusted range } \\ \text { WIN+Latch } & \text { Monitoring the fixed adjusted range with fault latch }\end{array}$

2. Time ranges

Tripping delay (ON-Delay):
Switch-off delay:

$$
\begin{aligned}
& U \leq 80 \% \text { of } U_{N} \\
& U \geq 115 \% \text { of } U_{N} \\
& \text { phase failure }
\end{aligned}
$$

Adjustment range
fixed, 30s
< 200ms
< 200ms
< 20ms
3. Indicators

Green LED ON/OFF:
Yellow LED ON/OFF:

Mechanical life: Electrical life:

Switching frequency:
Overvoltage category: Rated surge voltage:
20×10^{6} operations 2×10^{5} operations at 1000 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1) III. (in accordance with IEC 60664-1) 4 kV

- 7. Measuring circuit

Measured variable:
Measured input:
Terminals:
Overload capacity:
Input resistance:
Switching threshold Us:
10-minutes-average:
Overvoltage category:
Rated surge voltage:
8. Accuracy

Base accuracy:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
$3(\mathrm{~N}) \sim$, sinus, 48 to 63 Hz
(= supply voltage)
(N)-L1-L2-L3
determined by tolerance specified for supply voltage
see table ordering information or printing on the unit see table ordering information or printing on the unit
III (in accordance with IEC 60664-1) 4 kV
<2\%
$\leq 1 \%$
$\leq 0,05 \% /{ }^{\circ} \mathrm{C}$

- 9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$
Storage temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Transport temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Relative humidity: $\quad 15 \%$ to 85%
(in accordance with IEC 60721-3-3
class 3K3)
2, if built in 3
(in accordance with IEC 60664-1)

- 10. Weight

Single packing

Functions

Window function WIN:

When the supply voltage U is applied, the output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired and if the measured voltage is within the fixed adjusted window. When the measured voltage leaves the window between the fixed adjusted range, the output relay R switches into off-position If the voltage reenter the adjusted window, the output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired.

10-minute-average

The 10-minute average functions as a monitoring of the voltage quality. A floating average over 10 minutes will be measured at each input voltage. The output relay R switches into off if the floating average is exceeded.

WIN+Latch:

When the supply voltage U is applied, the output relay R doesn't switch into on-position indepentend of the measured voltage! The fault latch must be deactivated (turn the function selection switch to the left = Latch OFF), so that the output relay switches into on-position. When the measured voltage is within the fixed adjusted window, the output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired. As soon as the output relay R is into on-position, the fault latch can be activated (turn the function selection switch to the right = Latch ON). Now the unit is in the monitoring mode with restart lockout.

Connections

Dimensions

Ordering information

Type	Rated voltage $U_{\mathbf{N}}$	Switching threshold $\mathrm{U}_{\mathbf{S}}$	10 -minutes-average	Part Nr. (PQ 1)
E3YF400VFAL02	$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	fixed $0,8 \times \mathrm{U}_{\mathrm{N}}$ $(184 \mathrm{~V})$ fixed $1,15 \times \mathrm{U}_{\mathrm{N}}$ $(264 \mathrm{~V})$	$1,1 \times \mathrm{U}_{\mathrm{N}}$ to $1,15 \times \mathrm{U}_{\mathrm{N}}$ $(253 \mathrm{~V}$ to 264 V$)$	1341400

